## How long is a hillslope?

## 2. Inverting drainage density

The inverse of drainage density provides a measure of catchment average hillslope length (Tucker et al., 2001) This value can be rapidly calculated for any catchment, assuming an accurate constraint on the location of the channel network.
Little variation is observed across a landscape. This indicates that large changes in valley scale are not captured when using this technique.


## 3. Measuring hillslopes directly

Slope-area plots perform poorly, and drainage density does not capture the true variation of hillslope lengths in a landscape.

To robustly measure hillslope length at a range of spatial scales direct traces of overland flow length from hilltop to channel are employed.
Flow is routed across the DEM as a point source travelling across each cell in the direction defined by triangular facets fitted to each cell (Tarboton, 1997).
This produces an unprecedented scale of hillslope length measurements with over 150,000 traces measured in a $50 \mathrm{~km}^{2}$ area These data can be interpreted at a range of spatial scales:


## 4. Evidence for nonlinear flux

This density of hillslope length measurements allows the nonlinear sediment transport law (Roering et al., 1999) (a) to be tested by considering the predicted relief hillslope length relationship (b).


Using published parameters for the Oregon Coast Range (Roering et al., 2007) we predict a critical slope of 0.7 , lower than the previously reported value (1.2).


Data points are coloured by second order drainage basin, indicating the spatial heterogeneity in measurements. The circled points which fall below the main data cluster may be indicative of basins eroding at a slower rate than the landscape as a whole.

## 5. Conclusions

Direct measurements are more robust, providing a better constraint on hillslope length than previous methods.
We can now estimate hillslope length at a range of spatial scales.
Relationships between hillslope length and relief support the nonlinear model of hillslope sediment transport.
Hillslope length relief relationships may identify variations in erosion rates across landscapes.


References





